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Improvements in the transverse properties 
of composites 
Part 1 Fracture surface energy and mechanism of transverse 

fracture in glass fibre composites 

G. M A R O M ,  E. F. T. W H I T E  
Department of Polymer and Fibre Science, The University of Manchester Institute of Science 
and Technology, Manchester, UK 

Fracture surface energies of initiation (7i e) for a transverse fractu re process in glass-reinforced 
epoxy composites have been measured and the results calculated by three different treatments 
and are compared with the average fracture surface energies (TF e) for the complete fracture 
process. 

Changes in these two fracture properties are studied as a function of the volume fraction 
of the fibres, and the relation between the surface energies is established as a factor which 
determines the nature of the fracture process. When 7~ e - y e > 0 a catastrophic failure is 
expected, whereas a controlled fracture is observed for • i  e - -  y F  e ~ 0. 

1. Int roduct ion 
Fracture processes in composite materials 
require a greater understanding, if these materials 
are to be used for engineering purposes. Com- 
posites to be used at the highest level of properties 
must necessarily be constructed of highly 
aligned fibrous reinforcement, and it is this 
measure of alignment that contributes to their 
high stiffnesses and strength in the fibre direction. 
Such reinforcement, however, confers poor 
stiffness, strength and crack growth resistance 
to stresses in the transverse direction. 

The process of fracture in fibrous composite 
materials will generally involve an initiation 
process, in which the crack first develops. This 
first-formed initial crack may subsequently 
behave in three possible ways. It may (i) remain 
stable; (ii) grow in a steady controlled fashion; 
or (iii) propagate catastrophically leading to 
immediate rupture of  the sample. The relative 
energies, required for the initiation and con- 
tinued growth of the first-formed crack, the 
stress geometry and the material properties 
determine which of the above processes will 
occur. 

Fracture in a fibre-reinforced composite can 
include the creation of three types of fracture 
face, namely: (i) creation of new matrix surface 
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due to growth of the crack through pure matrix 
zones; (ii) formation of new end-surfaces of  
fibres due to fibre breakages; (iii) development 
of new surface of matrix and fibres due to 
fracture of the interface and subsequent de- 
bonding of fibres from the matrix. It should be 
noted that the energies required to create a new 
matrix surface by debonding at the interface, 
may be different from those required to create a 
matrix failure surface. The latter may involve 
considerable plastic deformation and con- 
sequent high fracture surface energy, whereas 
failure in the interfacial region need not neces- 
sarily involve plastic flow in the matrix. There 
are several conventional test methods for 
evaluating the transverse strength of uni- 
directional composites, for example, by meas- 
uring the transverse flexural strength, or by 
measuring the shear strength [1 ]. These methods 
often measure structural properties which are 
dependent on the type and geometry of specimen, 
and do not measure a basic parameter that is 
applicable to all test methods. However, it has 
been postulated [2] that the fracture surface 
energy (or the strain-energy release rate) is a 
bulk property of the material and thus is 
independent of the specimen configuration. It 
seems reasonable therefore to use the methods 
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of  fracture mechanics to measure the fracture 
surface energy as a means of analysing the 
failure behaviour of  composites. 

Generally, the fracture surface energy, ~, is 
defined as the work required to create unit area 
of  fracture face, irrespective of  the type or types 
of new surface comprising the fracture face, or 
o f  its microscopic shape. A distinction is often 
made [3 ] between two values of  ),: )'i, the value 
of ~ used in the Griffith equation [4], and VF, 
the value averaged over the whole fracture 
process. ~'i is related to the stain-energy release 
rate at the instant of  fracture b y -  (OU/~A) >~ yr, 
where A is the area of  the new fracture face, 
whereas ~,r is related to the total energy which 
is dissipated in the complete fracture process by 
)'F = U/A. For  a given material ~i and Vr are 
not necessarily the same. 

It  is of  interest to establish the relation 
between ~'I and yF along the whole range of the 
volume fraction of  the fibres, as this relation 
governs the nature of  the fracture process, that 
is whether fracture proceeds catastrophically 
or in a controlled fashion. 

2. Specimen preparation andtesting 
"Araldi te"  (CIBA Ltd) epoxy resin MY.750, 
cured by the hardener HT.972 was used as the 
resin for all specimen preparations. E-glass fibres 
in the form of 408 strand rovings without 
surface treatment were used for the reinforce- 
ment. Pure resin was cast in a 10 • 10 cm open 
mould to produce plates of  0.5 cm thickness. 
Composites were made by close winding the 
glass rovings at a density of  10 turns per 1 cm 
width on a winding machine drum (26 cm 
diameter) to form 10 cm wide strips. These were 
impregnated with an acetone solution of the 
resin, cut into 10 • 10 cm flat sheets and 
moulded in a three plate mould under 100 psi. 

EY" 

pressure at 170~ to form 0.5 cm thick sheets. 
The volume fraction of  the fibres was controlled 
by the number of  "pre-preg" sheets introduced 
into the mould, and by the amount  of  resin 
squeezed out in the moulding process. The 
moulding plates were cut into specimens of the 
form of 0.5 cm square-section bars, 4.5 cm long. 
Cuts to a depth of  c, equal to multiples of  one 
tenth of  the beam thickness, were made at the 
centre of  each bar (Fig. la). In specimens of 
pure matrix a scratch was made at the bot tom 
of the cut, similar to a method described for 
metals [5] in order to diminish plastic deform- 
ation, and to reduce the scatter of  the results. 
In the composites the fibre direction was as 
indicated in Fig. lb. The specimens were tested 
in three-point bending on an Instron machine 
at crosshead speed of 0.05 cm/min. Typical 
load-deflection curves are shown in Fig. 2. 

3. Transverse strength 
Cooper and Kelly [6] and Gerberich [7] suggest 
that in the case of  no interfacial contribution 
Equation 1 applies: 

crte = ~m[1 -- ~/(4Vf/rr)] (1) 

where at c is the transverse strength of the com- 
posite, O'm is the strength of the matrix and Vt is 
the volume fraction of the fibres. This function 
is shown in Fig. 3 for O'm ---~ 120 M N / m  2. 
Equation 1 was developed for the case of  fibres 
being packed in a square array in the resin, at e 
becomes zero for Vf = 0.79 - a situation in 
which the fibres would be in contact throughout. 
For  fibre-matrix interfacial strength greater 
than zero the "law of mixtures" is applied giving 
the following result. 

~r,e = (rm[1 - ~(4Vf/Tr)] + ~ri~/(4V~/~r) (2) 

where ~i is the tensile stress necessary to separate 

t �9 

(a) (b) 
Figure 1 (a) The specimen geometry. (b) The fibre direction in regard to the specimen geometry and the 
mode of loading. 
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Figure 2 Typical load-deflection curves for specimens of  
c/d = 0.4, indicating load and deflection at fracture and 
total fracture energy. (a) Pure matrix; (b) Composite, 
Vf = 0.27; (c) Composite, Vf = 0.45. 

the fibre from the matrix under transverse 
loading. 

Similarly, it is possible to develop an equation 
for the case of hexagonal array of the fibres in 
the matrix arranged as in Fig. 4. Here we 
assume the crack grows in the matrix by the 
shortest path [2, 8]. For hexagonal arrange- 
ment of the fibres in the matrix the inter-fibre 
spacing, A, and the centre-to-centre fibre spacing, 
A', are given in terms of the fibre radius, r, and 
V~ by the following equations: 
A' = 2r~/[~r/2~/3Vf)] ,  h = 2 r ~ [ r r / ( 2 , / 3 V f ) ]  - 2 r  

(3) 
When the fibre-matrix interfacial strength is 
zero, the transverse strength is reduced by the 
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Figure 3 Transverse flexural strength of  the composites 
as a function of  the volume fraction. A comparison of  
experimental results with various theoretical expressions. 

rat io  Am/A = A/h',  w h e r e  Am is th e  m a t r i x  
area and A m / A  is the matrix area fraction. 

A/A' = 1 - ~ / [ (2~ /3Vf ) /~ ]  (4)  
Hence: 

at  e am{1 " ' = - ~ [ ( 2 ~ , 3 v ~ ) / ~ ] }  (5) 
Equation 5 is shown plotted in Fig. 3. Now, 
~t e becomes zero at Vf = 0.906 (close hexagonal 
array). 

For fibre-matrix interfacial strength greater 
than zero the "law of mixtures" may be applied 
giving the following: 
~t  e = a m { 1  - -  ~ / [ ( 2 ~ / 3 V ~ ) f i r ] }  + cr~ 

~/[(2 ~/3 Vf)fir} (6) 

at o values for samples tested in bending 
experiments are shown in Fig. 3. Substitution 
of the experimental results into Equation 6 gave 
an average value for ai of 5 MN/m 2. 

�9 �9 �9 �9 @ 
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Figure 4 A schematic transverse fracture path in a com- 
posite of  hexagonal array fractured in a bending mode. 
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4. Fracture surface energy of initiation 
4.1. Determination of yi 
Various approximations can be used for cal- 
culating the yz values f rom the experimental 
results. Three of these methods were used in this 
work, and the results were compared. 

The first approximation is the compliance 
method [9, 10]. I t  is based on the fact that at 
the instant of  fracture initiation yi  = - (9 UlnA) 
where A is the total area of  the cut. Taking 
U = e v 3 r / 2  = k 3v2/2 and (~U/Ok) = 3v2/2 it 
can be shown that 

3r, 2 ~k 
Yzl = 2 0A (7) 

k and ~ are described in Fig. 2. 
The term Ok/OA can be determined experi- 

mentally by measuring the stiffness of specimens, 
containing a range of crack areas, and then 
measuring the appropriate slope of a plot of  k 
as a function of A. It  is important  to note that  
this approximation does not consider the shape 
or the geometry of the specimen, or the change 
from plane-strain to plane-stress conditions 
with increasing c/d ratio. 

The second approximation is based on stress 
intensity factor (K~) calibrations [11-13]. The 
term KI describes the external loading and the 
geometries of the crack and of the specimen, it 
has been shown by Irwin [14] that yx and KI are 
related by K~ 2 = 2E7I, where E is the transverse 
Young's  modulus of the composite. KI is often 
expressed by a geometrical term, Y, which is 
c/d dependent. For  three-point bending speci- 
mens Y = KibdZ/6Mc~, where M is the applied 
bending moment  which for a rectangular bar 
is M = (rvbd2/6, and cr~ = 3Pvll2bd ~ is the 
fracture stress. Hence 

y20-F2 C 

~'I2 = 2 E  (8) 

Brown and Srawley [l l]  expressed Y to 
within 0.2% by fourth-degree polynomials of  
the form 

Y = Ao + A~(c/d) + A2(c/d) ~ + A3(c/d) 3 
+ A4(c/d) 4. 

For  lid = 8, A has the following values: 
A 0 = + 1.96, A1 = - 2 . 7 5 ,  A2 = + 13.66, 
A3 = - 23.98, A4 = + 25.22. The calculated 
values of Y used in this work are shown in 
Table I. 

The third approximation is based on applying 
a correction to the Griffith equation for plane- 
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TABLE I Values off(c/d) and of Yas a function 
of c/d 

c/d 0.1 0.2 0.3 0.4 0.5 0.6 

f(c/d) 0.23 0.36 0.41 0.43 0.43 0.43 

Y 1.80 1.81 1.93 2.16 2.58 3.32 

strain conditions, i.e. yi = (1 - v 2) 7r ar2c/2E 
where v is the appropriate Poisson's ratio. Such 
a correction will allow for a wider range of 
c/d, i.e. plane stress as well as plane strain 
conditions. For  convenience, the corrected 
Griffith equation is often [5, 15 ] presented in the 
form: 

9 (1 - v2)PvZl ~ [ c \  
9"% = 8Eb--~d --- 7)) 3 f kd) (9) 

where f ( c /d )  is a dimensionless function of c/d. 
At small c/d values f ( c /d )  = ~r c(d - c)3/d ~, and 
the equation reduces to the original Griffith 
equation. The values of f ( c /d )  were calculated 
by various mathematical treatments. Table I 
shows the results of  one of these treatments [3] 
made for four-point-bending specimens. 

All three approximations described above 
were used for determining 7i e from the experi- 
mental results. The values o f f ( c / d )  used in the 
calculation, were the values for four-point- 
bending specimens, shown in Table I, with an 
error of  less than 1 0 ~  [5]. The factor (1 - v ~) 
which is an approximation [5] was taken to 
equal 1. The transverse Young's  moduli for all 
samples were determined by three-point-bending 
tests of  the un-notched beams, using the 
equation E = k I3/4bd 3 (ASTM D.790). The 
experimental results for the appropriate modulus 
E are shown in Fig. 5. The results for yi c from 
these results are summarized in Table II. As 
mentioned previously in Section 2 the results 
for the pure matrix were highly dependent on 
the nature of  the cut, and the final value of 7 i  m 

was, therefore, determined from the average of 
three sets of  results, with a scatter of  ,-~40 ~ .  
The 7i m results in Table I I  are of  one of these 
sets. 

All specimens of pure matrix exhibited 
catastrophic fracture for every c/d. Un-notched 
specimens and those containing shallow cuts of  
composites of  Vf = 0.27 - in which a relatively 
high energy was built up before fracture 
occurred - also failed in a catastrophic fashion, 
resulting two pieces which were being held 
together by a few misaligned fibres. The energy 
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Figure 5 Transverse Young's moduli of the composites 
as a function of the volume fraction compared with the 
theoretical lower bound. 

required to accomplish the separation of the 
two pieces was not recorded when using the 
initial scale sensitivity of  the Instron machine. 
Specimens of the rest of the tested composites 
for every old exhibited controlled fracture. It is 
obvious that almost similar values of y~e were 
obtained by using the second and the third 
approximations. These values were in very good 
agreement with the values of ~,i e obtained by 
applying the compliance method to the experi- 
mental results. As the compliance method is 
the only one out of these three, which does not 
take into account the geometry of the specimens, 
the final value of y1 e for every c/d was calculated 
by taking an average y~ e using the following 
formula: 

yi e = [(yi2 e + yIae)/2 + yhe]/2. 

In this way, a single value of T I  e for every value 
of old was obtained. The final results show a 

consistent variation of 7~ e as a function of c/d 
for most of the samples. This variation is 
illustrated in Fig. 6. Since it is obvious that the 
results of yi e for c/d values in the range of 
0.2 ~< e/d<~ 0.6 are very similar, and as this 
test has been previously recommended [5, 12] 
to be carried out for low values of c/d, the 
average yz e taken over the range 0.2 ~< c/d <~ 0.6 
was therefore calculated for every tested V~ to 
be the surface fracture energy. The results are 
shown in Fig. 7. 

4.2. y i  e as a f u n c t i o n  o f  Vf 

Gerberich [7] - basing his considerations on the 
existence of high plastic deformation zones in 
the immediate vicinity of the fracture, and by 
calculating the volume of the matrix material 
involved in plastic energy dissipation - suggests 
that for a square array of the fibres, and for a 
zero interfacial area 

yi e = 2amEmr [~(~r/4Vf)- 11 (10) 

where am is the nominal fracture stress and Em 
is the true fracture strain. A comparison of 
Equation 10 - substituting Em == am/Era and 
using am = 120 MN/m ~, E m =  2.9 GN/m 2, and 
2 r = 15.2 x 10-6m (as measured) with the 
experimental observations is shown in Fig. 7. 

A different approach to this problem is to 
adopt the same considerations used for at e . 
Assuming that there is no fibre breakage during 
the fracture initiation along the fibre direction, 
only two of the three possible fracture-face 
types are formed, and therefore, only yi m and 
y i _ the fracture surface energy of initiation of 
the matrix and interface respectively - will 
contribute to the final value of y~e. The con- 
tribution depends on the proportion of each type 
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Figure 6 The values of fracture surface energy of initiation (yei) of a composite of Vf = 0.52 as a function of c/d. 
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Figure 7 The experimental values of fracture surface 
energy of initiation as a function of Vf, compared with 
various theoretical relations. 

of  fracture,  which i tself  depends  on V~ and  on 
the a r r angemen t  of  the fibres in the  mat r ix  
( random,  hexagonal ,  square).  F r o m  energy 
cons ide ra t ion  the fol lowing appl ies :  

710 A = 7i m Am + y i  i Ai (11) 
where Am and Ai are the mat r ix  and the interface 
area  respectively.  

Am AI (12) 
7I ~ = 7 P  7 + 71i -A 

By ana logy  to Sect ion 3 and  Equa t ions  2 and  6 
we ob ta in  for  a square  a r ray  tha t  
7~ ~ = 7~ m [1 - x/(4Vf/~)] + 7~i[,/(4Ff/rr)] (13) 
and  for  hexagona l  a r ray  
7 I  e = 7 I  m [ 1  - -  ,/(2~/3Vf/rr)] + 7z i [ ~/(2~/3Vf/zr)] 

(14) 
Equa t ions  13 and  14 are  shown in Fig. 7 for  
7i  m = 0.73 k J /m  ~ and  7i t = 0. 

By ex t rapo la t ing  the exper imenta l  results  to 
Vf = 0.906 we find tha t  7~ i ~ 0.015 k J /m  2. 

5. The  average fracture surface 
energy, 7F ~ 

5.1. D e t e r m i n a t i o n  of  7F c 

W h e n  a specimen fractures  ca tas t rophica l ly ,  a 
curve o f  the type  shown in Fig.  2a is recorded  
on the Ins t ron.  Cont ro l l ed  f rac ture  leads to 
curves o f  the  type  shown in Figs.  2b and  c [16]. 
In  this case, all  the  elast ic  s t ra in  energy s tored  
in the  specimen dur ing  the tes t ing and  all  the  
energy s tored  in the Ins t ron  machine ,  are  con-  
ver ted into f rac ture  surface energy. N o  losses, 
e.g. convers ion  into  kinet ic  energy are  incurred .  
In  this s i tuat ion,  the area  under  the  curve is 

TABLE I I I  7F e values of the composites 

V~ 0.27 0.37 0.45 0.52 0.67 0.76 

e/d 7F c (102 J/m S) 

0.1 4.4 4.7 5.2 2.4 1.9 1.2 
0.2 3.4 3.2 3.1 2.1 1.4 0.91 
0.3 3.3 3.7 3.0 2.1 1.6 0.85 
0.4 3.2 3.5 3.6 1.8 1.2 0.66 
0.5 3.5 2.6 2.0 1.7 0.93 0.61 
0.6 3.0 3.1 2.6 1.6 0.82 0.54 
0.7 2.7 2.0 1.8 1.2 0.53 0.41 
0.8 3.2 1.7 1.4 1.3 0.62 0.29 
0.9 2.4 1.8 1.5 0.70 0.64 - -  

re la ted  to the to ta l  work  requi red  to f racture  
the specimen comple te ly  [17]. 

Therefore :  
U 

7re  2b(d - c) (15) 

7F e was ca lcula ted  for  all  compos i t e  specimens 
o f  every dep th  o f  cut. The  results are  summar ized  
in Table  III .  M o s t  o f  the  7F e values show a 
consis tent  va r ia t ion  with c/d. The average over  
the range o f  0.2 ~< c/d <~ 0.6 was t aken  as the  
final value o f  7F e for  every c/d value. Al l  
specimens o f  the pure  mat r ix  exhibi ted cata-  
s t rophic  fracture.  The  energy, as measured  by 
the area  under  the f rac ture  curve was, therefore,  
higher  than  the real  value. In  specimens with 
deep cuts the f racture  process  became pro-  
gressively less ca tas t roph ic  and the values o f  U 
for  these specimens were close to the real  value.  
The final value  o f  7 r  m was de te rmined  by  extra-  
po la t ing  the results o f  each set o f  specimens,  
wi th  c/d values ranging f rom 0.1 to 0.9 to the 
po in t  c/d = 1. Al l  the  sets gave an average 
o f  0.3 kJ /m 2. The  final results are  shown in 
Fig. 8. 

5.2. 7~ e as a f u n c t i o n  of  gf 

F o r  the  pu rpose  o f  de te rmin ing  7F e as a funct ion 
o f  Vf it is poss ible  tha t  the same considera t ions ,  
used for  the de te rmina t ion  of  a s imilar  funct ion 
o f  7I  e apply.  As  scanning e lect ron microscope  
studies o f  the  f rac ture  face p rove  tha t  fibre 
b reakage  does t ake  place  dur ing  the comple te  
process,  a th i rd  te rm mus t  be a d d e d  to the 
equa t ion  for  7F e. By ana logy  to Equa t ion  12 
we can wri te :  

Am . AI Af 
7F~ = 7~m 7 + 7~' -2 + 7 ;  ~ (16) 

where Af is the  fibre surface a rea  and  A~/A is 
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Figure 8 T h e  e x p e r i m e n t a l  v a l u e s  o f  f r a c t u r e  s u r f a c e  

e n e r g y  o f  t h e  c o m p l e t e  p r o c e s s  ~,F ~ as  a f u n c t i o n  o f  Vf. 

the fibre area fraction. While it is reasonable to 
assume that Am/A and Ai/A have the same 
forms as in Equations 13 or 14, A~/A is determined 
by the probability of  fibre breakage during the 
process. This probability itself depends on 
various factors such as Vf and the degree of 
misalignment of  the fibres. 

In order to evaluate the contribution of the 
fibre breakage to )tF e a determination of )tF t 
was carried out by measuring the tensile energy, 
required to completely fracture a roving of the 
glass fibres. A typical load-deflection curve is 
shown in Fig. 9. The area under the curve is 
equivalent to the total tensile energy. The value 
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Figure 9 A t y p i c a l  l o a d  d e f l e c t i o n  c u r v e  f o r  a g l a s s - f i b r e  

r o v i n g .  U is t h e  e n e r g y  r e q u i r e d  t o  c o m p l e t e l y  f r a c t u r e  
t h e  r o v i n g .  
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found for rovings containing 408 fibres of  
7.6 x 10-Sm radius was 0.23 J. 

By substituting this energy value into the 
equation )t~.f = U/2A, 7F ~ was found to be 
1.6 MJ/m 2. 7~.~ is thus some four orders of 
magnitude greater than )tF m. Therefore, even if 

" - - - - - - ' T - - T  r ~ T 7 1 ~ ]  

CATASTR OPHIC [] 

CONT~OLL ED 
Q3 

Q2 

d ~  

u I 

-122 
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vf 

Figure 10 (Tz e - yF e) as a function of the volume fraction 
of the fibres, and the ranges of catastrophic and con- 
trolled fracture processes. 

the probability of  fibre breakage is very low, 
the contribution of this process to the total 
average surface fracture energy is still dominant. 
It  is obvious that the maximum contribution of 
7F ~ to 7F c occurs for Vf values of  about  0.45. 
By neglecting the contribution of 7F m and y r  i 
at this Vf value we find, that the approximate 
value of the fibre area fraction, A~/A is 10 -4. 

6. The  nature of the transverse fracture 
process 

By comparing the fracture curves of  two com- 
posites of  different Vf values (Figs. 2b and c), 
it is possible to see that there is a change in the 
degree of control of  the process with V~. I t  is 
clear that the nature of  the transverse fracture 
process is governed by the relation of y1 e to 
yF e. For  "~I e - -  ) tF  e > 0 w e  expect a catastrophic 
process and for ) t i e  - -  )tF e < 0 a controlled 
process is observed. The magnitude of the 
absolute value of )t~e _ )tFe, determines the 
degree of control. Fig. 10 shows the ranges of 
controlled and catastrophic processes. 

The fact that the probability of  fibre breakage 
and the contribution of  7r  ~ to the value of 7F e 
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Figure 11 Scanning electron micrographs of transverse 
fracture faces (• 280). (a) Vf = 0.27, wide zone of 
fractured matrix between the fibre layers. (b) V~ = 0.52, 
narrow zones of matrix between the fibre layers. 

are the crucial  factors in determining the nature  
of  the process are fur ther  suppor ted  by scanning 
electron microscope examinat ions  o f  f racture 
faces. Fig. l l a  shows a micrograph  of  the 
fracture face o f  a low Vf composi te .  It  is obvious 

that  the wide matr ix  zones between the fibre 
layers show britt le f racture wi thout  any plastic 
deformat ion.  Figs. 1 l a and b shows tha t  bo th  
for  low and high Vf values the fibres separate 
completely  f rom the matrix.  But, in spite o f  the 
fact that  the fracture develops parallel  to the 
fibres it is possible to find broken  fibres in both  
fracture faces. I t  also may be concluded that  the 
transverse fracture process is composed  of  two 
simultaneous processes:  one which is concerned 
with the matr ix  only and is catastrophic,  and the 
other  which concerns the fibres and the fibre- 
matr ix  interface which is a control led  fracture 
process. The  nature  o f  the overal l  process is 
soMy determined by Vf. 
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